﻿

# Bernoulli's function

Atmospheric Sciences (English-Chinese) dictionary. 2014.

### Look at other dictionaries:

• Bernoulli number — In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory. They are closely related to the values of the Riemann zeta function at negative integers. There are several conventions for… …   Wikipedia

• Bernoulli polynomials — In mathematics, the Bernoulli polynomials occur in the study of many special functions and in particular the Riemann zeta function and the Hurwitz zeta function. This is in large part because they are an Appell sequence, i.e. a Sheffer sequence… …   Wikipedia

• Bernoulli's principle — This article is about Bernoulli s principle and Bernoulli s equation in fluid dynamics. For Bernoulli s Theorem (probability), see Law of large numbers. For an unrelated topic in ordinary differential equations, see Bernoulli differential… …   Wikipedia

• Function (mathematics) — f(x) redirects here. For the band, see f(x) (band). Graph of example function, In mathematics, a function associates one quantity, the a …   Wikipedia

• Bernoulli process — In probability and statistics, a Bernoulli processis a discrete time stochastic process consisting ofa sequence of independent random variables taking values over two symbols. Prosaically, a Bernoulli process is coin flipping, possibly with an… …   Wikipedia

• Bernoulli scheme — In mathematics, the Bernoulli scheme or Bernoulli shift is a generalization of the Bernoulli process to more than two possible outcomes.[1][2] Bernoulli schemes are important in the study of dynamical systems, as most such systems (such as Axiom… …   Wikipedia

• Bernoulli distribution — Probability distribution name =Bernoulli type =mass pdf cdf parameters =1>p>0, pinR support =k={0,1}, pdf = egin{matrix} q=(1 p) mbox{for }k=0 p mbox{for }k=1 end{matrix} cdf = egin{matrix} 0 mbox{for }k …   Wikipedia

• Euler-Bernoulli beam equation — Euler Bernoulli beam theory, or just beam theory, is a simplification of the linear theory of elasticity which provides a means of calculating the load carrying and deflection characteristics of beams. It was first enunciated circa 1750, but was… …   Wikipedia

• Hurwitz zeta function — In mathematics, the Hurwitz zeta function, named after Adolf Hurwitz, is one of the many zeta functions. It is formally defined for complex arguments s with Re( s )>1 and q with Re( q )>0 by:zeta(s,q) = sum {n=0}^infty frac{1}{(q+n)^{sThis series …   Wikipedia

• Exponential function — The natural exponential function y = ex In mathematics, the exponential function is the function ex, where e is the number (approximately 2.718281828) such that the function ex is its own derivative …   Wikipedia

• Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… …   Wikipedia